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Certainty and Domain-Independence in
the Sciences of Complexity: a Critique of

James Franklin’s Account of Formal
Science

Kevin de Laplante*

James Franklin has argued that the formal, mathematical sciences of complexity —
network theory, information theory, game theory, control theory, etc. — have a meth-
odology that is different from the methodology of the natural sciences, and which
can result in a knowledge of physical systems that has the epistemic character of
deductive mathematical knowledge. I evaluate Franklin’s arguments in light of
realistic examples of mathematical modelling and conclude that, in general, the formal
sciences are no more able to guarantee certainty than the natural sciences. Yet the
formal sciences are characterized by a ‘domain-independence’ that is philosophically
interesting, and I argue that it is this property that Franklin actually employs to
distinguish the formal from the natural sciences. I use Einstein’s
‘principle’/‘constructive’ theory distinction to contrast the domain-independence of
physical theories with the domain-independence of formal mathematical theories, and
show how both kinds of domain-independence function to generate the domain-inde-
pendence that is observed in the complex systems sciences. 1999 Elsevier Science
Ltd. All rights reserved.

1. Introduction

‘... Hammond’s project,’ Malcolm said, ‘is another apparently simple sys-
tem — animals within a zoo environment — that will eventually show unpre-
dictable behavior’.
‘You know this because of... ’
‘Theory’, Malcolm said.
‘But hadn’t you better see the island, to see what he’s actually done?’
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‘No. That is quite unnecessary. The details don’t matter. Theory tells me
that the island will quickly proceed to behave in unpredictable fashion.’
‘And you’re confident of your theory.’
‘Oh, yes’, Malcolm said. ‘Totally confident.’ He sat back in the chair. ‘There
is a problem with that island. It is an accident waiting to happen.’

The selection is from Michael Crichton’s best-selling novelJurassic Park
(Crichton, 1990, p. 76). Ian Malcolm is a chaos theorist, a member of a team of
scientists assembled by developer John Hammond to evaluate the safety and stab-
ility of his new prehistoric theme park. Jeff Goldblum plays Ian Malcolm in the
movie version. Malcolm’s prediction concerning the instability of the island ecosys-
tem is borne out, with deadly consequences for most of the secondary characters
in the story.

In recent years there has been an explosion of interest in complexity and complex
systems in a wide range of mathematical, natural and social sciences. Were Crich-
ton to write Jurassic Park today he would probably have identified Malcolm as a
‘complexity theorist’, a specialist in a variety of mathematical disciplines employ-
able in the service of the scientific study of complex systems, such as information
theory, network theory, catastrophe theory, self-organization theory, nonlinear
dynamics, etc. My interest in Crichton’s novel is not with chaos or complexity
theory per se, but with the nature of the science — ‘formal science’ seems an
appropriate description — that is practiced by those, like Ian Malcolm, who claim
to have a knowledge of the world acquired not through the conventional (fallible,
inductive) methods of natural science, but rather through the formal, deductive
methods of the mathematical disciplines.

To illustrate, consider the contrast between Malcolm and the other scientists in
the team sent to investigate Jurassic Park. The experts on prehistoric fauna and
flora, Alan Grant and Ellie Sattler, are excited by the prospect of having their
theoretical speculations confirmed or disconfirmed through direct observation. Are
dinosaurs warm-blooded or cold-blooded, do they run like birds or like lizards, do
they hunt alone or in groups? Grant and Sattler are models of the traditional natural
scientist. One can almost see the classical inductive reasoning (or Bayesian con-
ditionalization — pick your favorite theory of scientific methodology) grinding
away in their heads as they observe, for the first time and with their own eyes, the
subjects of their chosen science.

Malcolm, on the other hand, is not interested in the details of dinosaur physi-
ology or behaviour. Yet he is confident that the island ecosystem will exhibit some
form of surprising, unpredictable behaviour that was not planned for, that disaster
is inevitable, and all this on the basis of a formal analysis of a highly idealized
(one must assume, given Malcolm’s indifference to biological detail) mathematical
model of the island ecosystem. As traditional science goes, a prediction thatsome-
thing unexpected is going to happen is pretty wishy-washy. But the novel grants
that Malcolm is right, and that Malcolmknew that he was right. The islandwas
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somehow fated to exhibit unpredictable behaviour, and Malcolm’s computer model
did accurately represent (on a global scale at least) the dynamics of the island
ecosystem. Malcolm’s model captured certain structural features of the system that
necessitateda certain qualitative (in this case, nonlinear or chaotic) behaviour.

Malcolm is a fictional character, but let us consider him seriously for a moment.
In his own words, Malcolm is not a pure mathematician, but a ‘chaotician’, a
scientistwho studies complex phenomena through the lens of his chosen discipline,
nonlinear dynamics. But if Malcolm is really a scientist, then what is Malcolm’s
science a science of? Grant and Sattler study extinct life-forms, but what does
Malcolm study? Nonlinear dynamics is not a science of biological organisms, or
atoms and molecules, or any restricted class of natural systems. It is, rather, a
formal theory of a certain class of abstract mathematical objects or structures. The
knowledge that Malcolm brings to an empirical investigation is a knowledge of
these structures, and of facts relating to and deducible from these structures. Jeff
Goldblum could have been parachuted into any number of different sci-fi disaster
movies with different scientific settings — as the scientist studying nonlinear
dynamics of brain processes, or global climate change, or patterns in signals from
outerspace — with little or no change to the nature of the contribution he would
make to the problem at hand. He isex hypothesian expert on complexity, wherever
it may be found. But what kind of a science is this?

Crichton’s fictional portrayal of the application of a formal, complex systems
science to real-world phenomena is stripped of all realistic detail, but for our pur-
poses this is a virtue, for it presents a simple conception of the epistemology and
methodology of the formal sciences which can focus discussion. The features of
this conception are:

(1) the independence of the content of formal science from the details of the
material constitution of the systems under study,

(2) the emphasis on formal structures and relations of necessity within these
structures,

(3) the claim that such relations of necessity can be true of real-world sys-
tems, and

(4) the claim that, at least in certain cases, we can know with a kind of deductive
certainty that such relations do indeed hold of particular real-world systems.

In a provocative article on the nature of formal science entitledThe Formal
Sciences Discover the Philosophers’ Stone, James Franklin (1994) argues that, in
fact, the above four points form the methodological core of all formal science. On
Franklin’s view, the kind of science practised by Ian Malcolm is not only a concep-
tual possibility, but a model for the way all formal science is actually practised.
This is a striking claim, worthy of consideration if only to figure out what would
motivate anyone to believe it.

In this paper I review and evaluate Franklin’s conception of formal science. I
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show that Franklin’s radical epistemological claim — that the formal sciences allow
the discernment of facts about the empirical world that have the certainty of math-
ematical knowledge — is supported only by the most simplistic applications of
formal science, and is not applicable to real-world examples of mathematical mod-
elling of physical systems. Though his characterization of formal science as a
science of mathematical structures may be appropriate in some cases, I argue that
many of the sciences that Franklin calls ‘formal’ make essential reference to physi-
cal principles that are contingently, not necessarily, true.

2. Science Without the Sweat?

To motivate Franklin’s conception of formal science we shall borrow Ian Mal-
colm for a while and indulge in a little creative fiction of our own. Let us update
Malcolm so that he is an expert not only in chaos theory, but in a wide range of
formal sciences, from game theory to information theory to catastrophe theory.1

And let us grant him the ability to make elaborate mathematical calculations on
the spot, in his head.

Our story begins when Ian Malcolm, Super Complexity Theorist, is invited to
a potluck dinner hosted by one of his university colleagues. In attendance are a
number of Natural Scientists. Much wine and cheese is consumed, and the crowd
breaks up into small groups, each concerned with their own particular, vexing
research problems.

2.1. On the Stairs with Jill

Malcolm walks over to the stairwell and sees his host’s young daughter Jill
sitting at the bottom of the stairs holding a plastic toy of some kind, deep in concen-
tration.

‘What have you got there?’, he asks.
‘It’s a puzzle that my dad gave me’, Jill replies. She hands Malcolm a flat board

with a series of ridges in its surface, along which a small bead can roll. The ridges
connect four coloured areas. ‘The narrow ones are the mainland and the two oval-
shaped ones are islands in the middle of a river’, Jill explains. ‘You have to find

1Franklin presents a rather long but not exhaustive list of disciplines that he wants to include in the
category of formal science. These include post-World War II systems and engineering sciences such
as operations research, control theory, cybernetics, information theory and game theory; computer-
related disciplines like computational complexity theory, computer simulation and theoretical computer
science; complexity sciences such as the theory of cellular automata, self-organizing systems, and non-
equilibrium thermodynamics; mathematical branches of so-called non-physical science, such as math-
ematical economics or mathematical ecology; and several branches of theoretical physics, including
statistical mechanics, fluid dynamics and nonlinear physics (Franklin, 1994, pp. 515–21). We shall
discuss Franklin’s criteria for identifying the formal sciences below.
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a way to roll the bead across all seven bridges without crossing any twice. I haven’t
figured it out yet.’ (Fig. 1)

Always anxious to try his hand at a brainteaser, Malcolm rolls the bead around
the board, looking for a path across all seven bridges. He pauses for a moment,
then his eyes widen. ‘Your daddy is a bit of a trickster, Jill’, he says. ‘You can’t
win this game.’

‘Why not?’, she asks.
‘If you enter and leave a land area’, Malcolm explains, ‘you use up two of the

bridges. That means that, except for the two chosen for the start and finish, all the
land areas have to have anevennumber of bridges leaving them, or there will
necessarily be bridges left over, no matter what route is chosen. But in the puzzle
all four land areas have anodd number of bridges leaving them, so a path going
across all bridges exactly once is impossible.’

Jill isn’t sure she follows Malcolm’s reasoning, but she grabs the puzzle and
bounds up the stairs in search of her father.

2.2. In the Kitchen with Rob

Malcolm walks into the kitchen to get a bottle opener. He finds Rob, a physics
student, crouched beside the sink, watching droplets of water fall from the end of
the faucet. Rob says he’s noticed an interesting phenomenon. He’s been recording
the times between water droplets and can find no discernible pattern. He suspects
that the droplet times are distributed completely randomly, and is curious about
the details of the physical process of drop formation that would cause such ran-
dom behaviour.

Fig. 1. Jill’s bead game. The objective is to roll the bead across all seven bridges without
crossing any bridge twice.
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Malcolm asks to see the record of droplet times, and Rob hands him a sheet of
paper with a long list of numbers. Malcolm looks at the list for a while, rubs his
chin, then asks Rob whether he’s noticed a period-doubling pattern of droplet times
at lower flow rates. Rob admits he’s never paid attention to what happens at lower
flow rates, and turns the faucet knob down a notch. A pattern of times emerges
that repeats every eight drops. Rob turns it down a bit more, and a four-drop pattern
appears. Once again, and a two-drop pattern is heard. A final turn and the droplets
assume a regular, single-period beat.

‘Now watch’, says Malcolm, and he turns up the flow rate past the point where
the random drop sequence was observed. ‘I’ll bet you get a three-drop pattern up
here’, he says. A three-drop pattern is heard, and Rob is shocked.

‘How did you know those droplet patterns would be there?’, he asks Malcolm.
‘And what kind of physical process would produce such complex behaviour? It
must be frightfully complicated.’

‘Oh no’, replies Malcolm, ‘I’m sure it’s quite simple.’ He explains that the
droplet times for the ‘random’ sequence weren’t really random at all, but only
‘chaotic’. ‘There are correlations between successive drop times, but you won’t
notice them unless you plot the points as a two-dimensional scatter plot, with time
tn plotted on thex-axis and timetn 1 1 plotted on they-axis. You get a kind of
parabolic ribbon structure when you plot the times this way, which indicates a
quadratic relationship between successive times. Chaotic systems of this type have
a characteristic period-doubling route to chaos, and intermittent windows between
chaotic regions where the periods are odd-numbered.’

The complex dynamics of the system emerges from a simple, nonlinear, deter-
ministic relationship between a small number of variables, explains Malcolm. ‘I
suspect you could model a system like this with a simple mass-on-a-spring arrange-
ment, letting the mass be a function of time. When a droplet fills up with water
it will stretch the column of water that secures it to the faucet. When it breaks off,
the column will recoil, and the time for the next droplet to form and break off will
depend on the flow rate and whether the column is on the up-swing or the down-
swing of the recoil when the droplet gets heavy again. That’s probably where your
nonlinearity enters.’

Rob is thankful for Malcolm’s help, and grateful that he doesn’t have to bother
with the detailed physics of surface tension and fluid flow to explain this curi-
ous phenomenon.

2.3. On the Patio with Linda, Harry and John

Malcolm is invited to sit down for a drink with Linda, Harry and John, who are
ecologists working on forestry management problems. They tell Malcolm about
their current project, which is to develop a mathematical model of spruce budworm
infestations in the spruce and fir forests of eastern Canada and the northeastern
United States. These forests have periodically been subject to ravages by the spruce
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budworm caterpillar. For a number of years, a given patch of forest is seen to grow
with hardly any budworm in evidence. When the trees have reached a certain level
of maturity there is an explosive increase in the number of budworms and they
begin to defoliate the trees. When a stand of mature trees have been sufficiently
denuded over several consecutive years, they wither and die. The budworm popu-
lation within the patch can no longer be sustained since its food supply becomes
scarce. Their numbers decrease and then quite suddenly collapse to a low subsist-
ence level. But the forest canopy has been opened up, which allows new seedlings
to grow. The forest renews itself and a new cycle begins, which eventually leads
to another outbreak of insects in about thirty to seventy years.

The ecologists explain to Malcolm that they’ve just finished work on a math-
ematical model of the spruce budworm cycle that relates budworm density (B) to
tree branch surface area (S) and the percentage of foliage on the trees (E). Linda
hands Malcolm a sheet of paper with the following equations written on it.

dB
dt

5 α1BF1 2
(α3 1 E2)

α2SE2 G 2
α4B2

(α5S2 1 B2)

dS
dt

5 α6SF1 2
α7S
α8E

G
dE
dt

5 α9EF1 2
E
α7
G 2

α10BE2

S(α3 1 E2)

‘All those undefined parameters, theαs, represent various intrinsic growth rates
and predation rates’, says John. ‘The model captures all the basic qualitative fea-
tures of the outbreak pattern, even the sudden jumps in budworm population.’

‘What we want to do’, says Harry, ‘is find a way of stabilizingB at a low level.
We figure there has to be some combination of these parameters that will do the
trick, but there are so many variables that we’ve just about given up hope of
finding one.’

‘Hmm... ’ mutters Malcolm, pulling a pen out of his shirt pocket. ‘You want to
set the right hand side to zero, right? That’ll give you a big long equation inE
and S, but you can eliminateS, and that’ll give you this as the equilibrium con-
dition, right?’ he says, writing down the equation.

B̄ 5
2 α8α9

α2
7α10(Ē3 2 α7Ē2 1 α3Ē 1 α3α7)

‘That’s right!’ says Linda. ‘But we don’t know how to choose the parameters
that will ensure that the equilibrium is stable.’

Malcolm sighs. ‘You can’t do it’, he says. ‘Your stable equilibria lie on the
upper and lower folds of a dual cusp catastrophe surface, and the unstable equilibria
lie within the cusp region. You need to choose yourαs so that the system stays
out of that cusp region, but there aren’t any physically realizable values for theαs
that will do the trick. You can’t control this system.’
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‘Hunh?’, says Linda. ‘Can you run that by us again?’
Malcolm explains that you can write the equation forB̄, the steady-state con-

dition for budworm density, as a monic with no quadratic term by introducing a
new variable:

y 5 B̄ 2
α2α8Ē3

3α7(α3 1 Ē2)

After a bit of manipulation, you can show thaty satisfies the cubic equation

2 (y3 1 t1y 1 t2) 5 0

which a catastrophe theorist will recognize as the equilibrium equation for the
standard form of thecusp catastrophe. The parameterst1 and t2 are given in terms
of the original system parameters as

t1 5
2 α8Ē2

α2
7

F α2
2α8Ē4

3(α3 1 Ē2)2 2
α2α4α7Ē

α1(α3 1 Ē2)
2 α5α8G

t2 5
2 α2α2

8Ē5

9α3
7(α3 1 Ē2) F 2α2

2α8Ē4

3(α3 1 Ē2)2 2
3α2α4α7Ē

α1(α3 1 Ē2)
1 6α5α8G

Geometrically, the system can be represented as a three-dimensional system, where
the behavioural variable,y, is a function of two control variables,t1 and t2. The
cusp geometry gives you generic stability conditions for systems with two inputs
and one output. Malcolm sketches a diagram showing the cusp catastrophe surface
(Fig. 2).

‘What you want to do is manipulate theαs to stabilize the budworm density on
the lower sheet of the manifold’, Malcolm explains, ‘but you have to stay out of
the shaded cusp region, because it’s unstable. The equation for this region is simple:

4t31 1 27t22 $ 0

This is the necessary condition in order to be able to stabilize the budworm den-
sities at a low level. But if you look carefully at the physically realizable values
of the α parameters, you’ll see that there is no combination that will satisfy this
condition.’

The ecologists are stunned. ‘What does this mean?’ asks Harry. ‘Is there no way
to avoid these outbreaks?’

‘All it means it that no amount of “knob-twisting” with theα parameters will
suffice to control the system’, replies Malcolm. ‘That doesn’t mean the system
can’t be controlled, just that any effective scheme will have to be based on more
sophisticated methods of dynamic control.’

Malcolm excuses himself from the table, wishes everyone a good evening and
drives home. Along the way he notices that the timing between red, green and
yellow lights at a number of traffic intersections is not quite optimal, given the
joint goal of maximizing traffic throughflow and minimizing energy wasted through
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Fig. 2. Malcolm’s drawing of the catastrophe cusp manifold for spruce budworm outbreaks.

starting and stopping. He makes a mental note to call the city transportation auth-
orities in the morning.

3. Franklin’s Account of Formal Science

Readers may recognize one or two of the applications of formal science
described above. The first is widely known as the ‘Ko¨nigsberg Bridges Problem’.
The citizens of Ko¨nigsberg noticed that it seemed impossible to walk across all
seven bridges over the river Pregel without walking across at least one of them
twice. Leonhard Euler proved their conjecture correct, using the simple reasoning
described. Euler’s proof is now regarded as the first study in the topology of net-
works. James Franklin uses this example specifically to illustrate the general fea-
tures of his account of formal science.
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The second example is derived from Robert Shaw’s classic treatment of chaotic
dynamics in a dripping faucet.2 The catastrophe-theoretic analysis of the spruce
budworm outbreak is familiar to theoretical ecologists,3 though the proof that the
system cannot be stabilized by parameter ‘knob turning’ is certainly less familiar.4

I introduce these examples as an aid to explicating Franklin’s account of formal
science and to focus later discussion.

Franklin wants us to consider the nature of the contribution that a person trained
in network theory, or nonlinear dynamics, or catastrophe theory, can make to our
understanding of physical phenomena. In Franklin (1994), his primary concern is
with the epistemic character of the knowledge of physical phenomena acquired
through formal means, and the method by which this knowledge is obtained. In
this section we will consider two elements of the epistemic character of formal
knowledge that Franklin identifies: (i) domain-independence, and (ii) mathemat-
ical certainty.

The reasoning that Malcolm applies in each of the above cases is, in a strong
sense, domain-independent. In each case the system under investigation is recog-
nized to have a formal structure that can be captured in mathematical form. Mal-
colm then brings his mathematical knowledge to bear on the system and deduces
certain mathematical facts that are physically interpretable, and relevant to the
scientific problem at hand. But in each case the mathematical reasoning involved
is quite general, in that it is not tied to the particular material or ontological consti-
tution of the system in question. The impossibility of crossing all seven bridges
without crossing any twice is a restriction onany conceivable system with the
appropriate network topology. Similarly, the period-doubling route chaos is a
characteristic of any mapping with quadratic maxima, and the cusp catastrophe is
a generic stability feature of any two-input single-output system governed by a
point attractor. One can imagine the same analyses being applied to systems of
radically different ontological makeup.

Second, the insights into the physical phenomena studied in the above examples
appear to have the character of mathematical or deductive certainty. Once Malcolm
realizes that Jill’s game has a certain network structure, he is able to say, with
certainty, that there is no solution path. On the basis of the correlations observed
in Rob’s water droplet data, Malcolm knows with the utmost confidence that the
pattern is not random, and that it is caused by a characteristic period-doubling
sequence of bifurcations. Given the equations that describe the spruce budworm
outbreak, Malcolm is able to say without hesitation that no amount of parameter-
twiddling will stabilize the system. Franklin believes that the knowledge of physical
systems contributed by the formal sciences can have the character and certainty of

2Shaw’s experiment is described in Gleick (1987). For details of the analysis see Martienet al.
(1985); Yepez (1989).

3See Ludwiget al. (1978).
4See Casti (1982) for the original paper. This example is also discussed in Casti (1992).



709A Critique of James Franklin’s Account of Formal Science

mathematical knowledge. Consequently, this knowledge will never be rendered
obsolete by new scientific discoveries. The formal sciences have, in a real sense,
discovered the ‘philosophers’ stone’:

... knowledge in the formal sciences, with its proofs of network flows... and the like,
gives every appearance of having achieved the philosophers’ stone; a method of trans-
muting opinion about the base and contingent beings of this world into the necessary
knowledge of pure reason. (Franklin, 1994, p. 513)

The formal sciences may appeal, Franklin continues, to

the many who feel that philosophers of science have chatted on to one another suf-
ficiently about theory change, realism, induction, sociology, and so on, while real
science has been producing a huge and diverse body of knowledge to which all that
is totally irrelevant. (p. 513)

Precisely how are we to understand the claim that formal knowledge has the charac-
ter of mathematical certainty? Granting that mathematical reasoning about math-
ematical objects has a deductive character, in order for this reasoning to carry over
directly to a physical system, must we notalreadybe certain that a given physical
system actually instantiates the appropriate formal structure?

Franklin agrees that establishing the formal structure of a physical system is
necessary for our knowledge of the physical system to take on the character of
mathematical knowledge. However, he argues, in many cases this is achievable.
In uncomplicated cases like the Ko¨nigsberg bridge problem, the formal structure
is readily apparent to our perceptual faculties; we simplylook and seehow many
land masses there are and how many bridges there are, and how they are connected.

How do we know that we aren’t mistaken in our perceptions? Never, says Frank-
lin, if knowledge requires ‘absolute’ certainty — there is always the chance that
one is hallucinating, or that one of the bridges is a hologram projected by an alien
space-ship, or an evil demon is messing with one’s head. But this kind of uncer-
tainty attendsall perceptual knowledge. Rather, our knowledge of the network
structure of the bridges has ‘practical’ certainty, the certainty we have with respect
to ordinary perceptual judgments made under ordinary viewing conditions, such as
the judgment that my coffee cup is empty, or that my computer is sitting on top
of my desk rather than beneath it. The assumption of ‘practical certainty’ is required
even for traditionally acquired mathematical knowledge, since the certainty
obtained by following a proof of a theorem presupposes that one hasn’t misread
a step or been deceived at some stage in the proof.

Franklin makes much of the role of the computer in the methodology of the
formal sciences. It is also possible, Franklin reminds us, to solve the Ko¨nigsberg
bridges problem without any mathematical ingenuity at all, by simply checking by
computer whether all the possible paths which do not go over any bridge twice
(there are less than a thousand of them) go over all bridges once. The result is
exactly the same, and demonstrates the same impossibility with the same necessity
as the earlier reasoning. Notice also that though we may not be able to ‘survey’,
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through direct observation, the network structure of more complicated cases, we
can survey the simple cases, and we can survey the correctness of the steps in the
computer algorithm which performs the calculation for the complex cases. The
computer is able to extend the practical certainty acquired through direct perception
of simple cases to more complex cases because the computer program is itself a
formal system that transforms inputs into outputs through a chain of necessary
entailments.

At this point it becomes clear why Franklin chooses to call nonlinear dynamics
or network theory a science, rather than a branch of applied mathematics. Franklin
believes that physical systems can instantiate mathematical structures of various
kinds, and that mathematical structures are proper objects of sensory experience.
In this he sides with philosophers of mathematics of the structuralist school (e.g.
Resnick, 1981), who regard mathematics as a science of ‘structures’ or ‘patterns’,
and who

agree that the objects of mathematics should not be interpreted in a Platonist sense,
but should be reinterpreted as things available through ordinary sense perception.
(Franklin, 1994, p. 523)

Formal science is science because it makes possible a kind of knowledge of physi-
cal systems that, like the knowledge acquired in natural science, is grounded in per-
ception.

On the other hand, the epistemic character of formal science is different from
that of natural science because the exclusive use of mathematical reasoning
‘removes, through proof, the further source of uncertainty found in the physical
and social sciences, arising from the uncertainty of inductive reasoning and of
theorizing’ (p. 528).

4. Reality Check

The methodology of the formal sciences is summarized by Franklin as follows:

(1) There are connections between the parts of the system being studied, which
can be reasoned about in purely logical [or mathematical] terms.

(2) The complexity is, in small cases, surveyable. That is, one can have practical
certainty by direct observation of the local structure. Any uncertainty is lim-
ited to the mere theoretical uncertainty one has about even the best sense
knowledge.

(3) Hence the necessity [of the reasoning among the connections] translates into
practical certainty.

(4) Computer checking can extend the practical certainty to much larger cases.
(Points 1–4 from Franklin, 1994, p. 529)

It is unfortunate that Franklin gives no examples of applications of formal science
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other than the Ko¨nigsberg bridge example.5 A proposal that purports to draw a
principled distinction between the category of ‘natural’ science and that of ‘formal’
science, and that claims to give a characterization of the methodology ofall formal
sciences, requires at least some demonstration that it applies to more than the
single, simple case chosen to illustrate it.

In the absence of examples provided by Franklin, let us consider the two
additional examples introduced above, and see whether they fit Franklin’s model.
In the first example Malcolm uses chaos theory to discern a number of interesting
features of the dynamics of a dripping faucet. The drip times are analyzed and
correlations are observed which, when plotted in the appropriate phase space, reveal
an inverted parabolic structure (which would, upon closer analysis, reveal a fractal
geometry). From this structure Malcolm is able to infer that the dynamics of the
system is describable by the period-doubling route to chaos. He then makes a
couple of predictions concerning the drip patterns that will be heard at flow rates
above and below the chaotic region, which are confirmed. He later offers a hypoth-
esis concerning the mechanism which might give rise to the observed dynamics.

Now, are there ‘connections between the parts of the system being studied which
can be reasoned about in purely logical terms’? Yes, if we start the process of
inference from the observed data and follow the steps leading to the period-
doubling pattern. But in reality one needs fairly precise time measurements in order
to discern the correlation structure that actually governs the system dynamics. In
our fictitious example we imagine Rob with a stop-watch making measurements,
but one needs a laboratory setup with accurate measuring instruments to record
data which actually reveal the underlying attractor structure.6 But this point does
not significantly conflict with Franklin’s account if one grants that there issome
way of acquiring data that will resolve the attractor structure. If the attractor has
the characteristic inverted hump structure, then the inference to a period-doubling
route to chaos is automatic.

Once Malcolm is secure in his knowledge that there is an underlying period-
doubling dynamics present in the dripping faucet system, can he be as secure in
his prediction that one will actually hear a periodic pattern of droplets at lower flow

5He does discuss one other example from computer science, concerning attempts to write proofs that
a program is error-free (‘program verification’), but his discussion of this example focuses on the
question of whether mathematical properties are genuinely predictable of physical systems at all. Frank-
lin appeals to the structuralist tradition in the philosophy of mathematics in support of this view, but
does not offer any independent defense of structuralism in Franklin (1994). For an earlier discussion
where Franklin tries to make the case that mathematical properties are genuinely predicable of physical
systems, see Franklin (1989). For the sake of argument I have granted the premise that some form of
structuralism is true, and hence that it makes sense to talk about a science that studies the mathematical
properties of real physical systems. My criticisms of Franklin’s account of formal science, however,
do not turn on this premise.

6I performed this experiment in an undergraduate physics lab, and for my particular setup, period-
doubling was observed at about 9 drops/sec and chaos set in around 13 drops/sec. It took a laser and
a microcomputer to record the time intervals with sufficient accuracy to observe the ribbon-like structure
of the underlying chaotic attractor.
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rates? In a realistic experiment laboratory equipment may be required to isolate the
system from external influences and regulate the flow rate with sufficient precision
in order to observe predicted patterns of behaviour. Thus, Malcolm could not be
secure in his prediction regarding the actual behaviour of the dripping faucet sys-
tem. In our hypothetical example he just got lucky.

Nor can Malcolm be certain about his proposed mechanism for generating the
nonlinearities in the system. The interaction between the spring-like dynamics of
the water column and the increasing mass of the droplet is one plausible mechanism
(it has the right ‘stretch and fold’ character of all chaotic systems7), but it is not
the only conceivable one. At best, Malcolm could be certain thatsomekind of
stretch-and-fold dynamics is operating somewhere in the system. Such knowledge
can be an enormous aid in mathematical modelling, and a simple mass-on-a-spring
model may capture the dynamics quite well. But it in no way guarantees that one
has isolatedthe causal mechanism that is responsible for the dynamics in this
particular case.

Let us now consider the spruce budworm example. Linda, Harry and John had
already developed a mathematical model for a forest patch. Malcolm was able to
perform a number of formal operations on this model, reducing it to a form which
allowed it to be analyzed in terms of catastrophe theory. Once the abstract form
of the model was given, the impossibility of keeping the budworm density on the
lower sheet of the cusp and out of the unstable cusp region followed deductively.
This is clearly important information for anyone committed to the adequacy and
completeness of the initial model, but it should be obvious that the construction
of such models in ecology, economics, or any other area where fundamental laws
are rare or non-existent (and even reliable empirical generalizations are hard to
come by), is as much an art as it is a science. Simplifying assumptions and idealiza-
tions are essential to the construction of such models, and even when a good bal-
ance is achieved between empirical adequacy and analytic or computational tracta-
bility, most modellers are aware that they are dealing with mathematical cartoons
of real-world phenomena, not the phenomena themselves. Malcolm’s claim that
the budworm outbreaks can’t be controlled is entirely contingent on the acceptance
of a highly idealized model of the phenomena.

As Casti (1982) states, what is really interesting about the catastrophe analysis
of the model is that it shows that the number of physically meaningful parameters
in a problem may be very different from the number ofmathematicalparameters
needed to address the question of interest. In our example we had ten physically
important parameters (theαs) given as part of the original problem statement;
however, upon carrying out the elementary analysis of the equilibrium equation
for B, it turned out that the real question of interest regarding the possibility of

7That is, there is a mechanism that tries to increase the value of a variable without bounds, ensuring
that neighbouring points in state space diverge exponentially, and another that maps the variable back
onto a fixed interval in its state space, resulting in chaotic motion within the interval.
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regulating the budworm density by parametric variation came down to the inter-
relationship between the two mathematical parameterst1 and t2. Each of these
parameters is a complicated algebraic combination of all ten of the physical para-
meters. It is very unlikely that any amount of guesswork would find that this combi-
nation of theα parameters — and no other — is the relevant combination for
addressing the question of budworm outbreaks. The empirical significance of the
catastrophe analysis is not that it rules out the possibility of managing budworm
outbreaks, but that it gives us insight into what does and doesn’t count in the
analysis of the system in question.

This example illustrates a general problem with Franklin’s account of method-
ology in the formal sciences. On Franklin’s account, for knowledge of a formal
structure to count as knowledge of a physical system, one must establish that the
physical system instantiates the formal structure. But in the majority of realistic
modelling situations, the models involved are simplified abstractions of the real
system, and strict isomorphism between the model and the physical system is
impossible to establish. Insofar as Franklin’s accountrequiresthat such an isomor-
phism obtain, it rules out of consideration all but the most simple and contrived
models, such as the network model for the Ko¨nigsberg bridges problem.

But as a consequence of this strict requirement of isomorphism, Franklin’s
account makes it difficult to appreciate the diverse ways that real applications of
formal sciencecan contribute to our understanding of a physical problem. In both
the chaos theory and catastrophe theory examples, the complex dynamics of a
dripping faucet and a forest patch were found to depend on only a few parameters,
effectively reducing a complex multi-dimensional system to a simple, low-dimensional
system with the same qualitative dynamics as the original. Such analyses can yield
significant insight into the behaviour of the original system, but they do not depend
on the establishment of the structural identity of a real system and a formal system.

This is not to say that reducing the dimensionality of a problem, or constructing
formal analogies that mimic the dynamics of a natural system, is the only way that
formal science can contribute to our understanding of a physical system. It is to
say, rather, that there aremanyways that formal methods and formal models are
used in science, and many (if not most) of these do not require that the formal
model be structurally identical to a natural system.

5. A More Charitable Interpretation

At this point we should pause and consider whether we have interpreted Franklin
correctly, for it seems too obvious a fact that the formal sciences do not always
operate with physical systems that are known to instantiate a formal structure. Does
his account of formal knowledge really require such a close relationship between
models and the world? The emphasis that he places on ‘practical certainty’ would
seem to indicate that he does require it, but there is evidence in his article which
supports a more charitable and plausible interpretation.
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Franklin addresses the model–reality gap problem in the last section of his paper,
where he considers the role of experimentation in the formal sciences:

Real certainty for armchair work — surely this is too rosy a picture of the formal
sciences? If it were right, it ought to be possible to issue real-world predictions by
computer, without needing to do any experiments. Anyone who has worked in applied
mathematics knows it is rarely like this. It is well known that fitting a realistic math-
ematical model to actual data is in general difficult. Sometimes, as in meteorology
and macroeconomics, it is virtually impossible... Everyone agrees that formal work
can proceed with the usual necessity of mathematics, provided one keeps within the
model. The important point is that there is wide variability in the certainty in deciding
whether the real world has the structure described by the model. The model–reality
gap may be wide or narrow. (Franklin, 1994, p. 532)

Franklin even admits that his examples are tailored to fit his methodological model:

The examples above were chosen near the opposite extreme, even, so it was argued,
to the extent that there was no gap [between model and reality] at all. What structure
a system of bridges or a computer program has is open to perceptual inspection, with
the practical certainty that attends unimpeded sense perception. So all the hard work
is in the mathematics, and the results are directly applicable, again with practical
certainty. (p. 533)

But if the ‘real certainty’ characteristic of formal knowledge is applicable only to
a very small class of systems, then why advertise it as a general feature of all
formal science? Some insight into this question may be gained by considering
several comments that Franklin makes regarding the formal status of various
branches of theoretical physics. These comments suggest a different interpretation
of the essential character of formal science.

In retrospect, certain aspects of theoretical physics have a character recognizably like
the formal sciences. Statistical mechanics, going back to Maxwell and Boltzmann,
looks at how macroscopic properties of gases, like pressure and temperature, arise as
global averages of the movements of the individual particles. The emphasis is not on
details about the properties of the particles themselves, but on the transition from
local to global properties. The same is true of fluid dynamics, especially in the very
difficult study of turbulent fluids. The organization of the fluid flow into eddies and
smoke rings is plainly not to be explained by examining the individual atoms more
closely. Non-linear physics treats more generally the ways in which complicated glo-
bal structures can arise from simple local interactions. (p. 521)

Franklin is contrasting theoretical speculation concerning the natures of the compo-
nent parts or hypothetical constituents of a system, with the explanation of system
properties and behaviours that arise as collective phenomena or as mathematical
consequences of underlying dynamics. The move from microscopic to macroscopic
properties in statistical mechanics proceeds in a purely formal way, and can be
applied to a diverse range of systems as long as properties of systems at the
microlevel relate to properties at the macrolevel in the appropriate way. Similarly,
certain phenomena, such as the transition from laminar to turbulent flow in fluid
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dynamics, are generic properties of a certain class of nonlinear dynamical systems,
and do not depend on the detailed structure of the microconstituents.

While theexistenceof these formal properties is contingent on the existence of
system components of a certain kind, the relationships between formal properties
remain a matter of necessity:

Whether the kinetic theory of gases is true is a contingent fact, not easily established.
But it is in fact true, and the way temperature arises from the random motion of gas
particles is a matter of necessity. Though it is harder than in the case of the bridges
to determine if things have the properties, there is real necessity in theconnections
of the properties. Being provable, it is a stronger necessity than nomic or Kripkean
necessities. (p. 533)

In light of these comments, I offer the following reconstruction of Franklin’s
account of formal science:

(1) Natural systems possess formal, mathematical properties, which are deduct-
ive consequences of the natures and arrangements of the hypothetical con-
stituents of the system.

(2) Because these formal, mathematical properties are provable, they can be
known with deductive certaintyon the assumption that the hypothetical con-
stituents of the system exist and have the natures presumed in(1).

(3) For certain systems wecanhave practical certainty that the relevant constitu-
ents exist and possess the properties as given in (1). This practical certainty
is grounded in the fact that when structural relationshipsare instantiated in
physical systems, theymaybe directly accessible to perception.

(4) For many systems we cannot be certain that the assumptions necessary for
the deduction of formal properties obtain, either because the system is too
complex or because the assumptions are of a theoretical nature, inaccessible
to the senses via direct observation. In such cases one doesnot have practical
certainty about the formal properties of the system.

(5) The distinctive nature of the formal sciences is this:they tell us what the
formal, domain-independent properties of a system are or would be, given
certain assumptions about the natures and arrangements of the hypothetical
constituents of the system.

(1) makes an ontological claim about the reality of mathematical properties,
which Franklin defends on pp. 523–26. (2) and (3) together assert an epistemologi-
cal claim about the kind of knowledge that these properties make possible; this is
the main focus of Franklin’s paper. (4) simply admits what we all know to be the
case, and Franklin acknowledges to be so on p. 533. The only claim that is appli-
cable to the formal sciencesas a wholeis (5), and this, I contend, is what Franklin
intends as the essential feature of formal science that distinguishes it from natural
science; it is what is meant by saying that formal science, like any branch of
mathematics, is a science of ‘relations’, ‘pattern’ or ‘structure’ (Franklin, 1994,
p. 525).
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Franklin’s article gives the impression that he regards the epistemological
claim — that the formal sciences offer ‘practical certainty’ about real-world sys-
tems — as the central feature that distinguishes formal from natural science, but
one must conclude that he simply misrepresents his position, or is not clear on his
position himself. Regardless, the summary given above is the most charitable and,
I believe, the most defensible formulation of Franklin’s views.

6. A World Full of Structures

Franklin’s account of formal science raises some interesting questions concern-
ing the nature of formal constraints and their operation in the world. Consider once
again the Ko¨nigsberg bridges problem. The citizens of Ko¨nigsberg could not find
a path across all the bridges that did not cross one bridge twice. Why not? What
prevented them from finding such a path? The natural answer is that the network
structure of the bridges imposed aformal constraintthat all paths through the
network were required to satisfy. And this same network structure was responsible
for Jill’s frustration with the game that her father had given her. This kind of
structural constraint is not universal in scope, for it applies only to systems with
a given network topology, but itis strictly domain-independent, applicable to any
conceivable type (physical, biological, artificial, social) of system.

Franklin adopts a structuralist philosophy of mathematics, a view that regards
mathematical structures as real, genuine properties of physical systems. On a struc-
turalist account, the network topology of the Ko¨nigsberg bridges is a real property
of that physical system. As one contemplates the many different kinds of formal
structure that are conceivably instantiated in the world, this view naturally leads
to an expansion and diversification of the formal ‘ontology’ of the world. The
world appears densely populated with formal structures that constrain phenomena
in a myriad of different ways. Beads are constrained to follow certain paths and
not others in children’s games. Dripping water is constrained to burst into chaotic
rhythms at the turn of a faucet knob. Spruce budworm populations are constrained
to explode and shrink in rapid, discontinuous jumps.

When presented in this light, ascienceof formal constraints doesn’t seem so
odd. Processes and events in the world are governed by physical laws of various
kinds, but they are also governed by purely structural, formal constraints which
operate at all spatial and temporal scales. Understanding how these formal con-
straints operate in the world is a legitimate scientific pursuit, and it may well have
a distinctive character from that of the traditional natural and social sciences. Ian
Malcolm may be a fictional character, but the traits that mark and distinguish him
from his fellow natural scientists — a focus on mathematical theories and computer
models; relative indifference to the details of the material constitution and causal
mechanisms at work in specific natural systems; a degree of certainty about the
possibility or impossibility of the occurrence of certain phenomena that is rarely
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observed in traditional, empirically-oriented natural science — are not fictions, but
inherent characteristics of a science which specializes in formal structure.

7. Principle Theories and Formal Constraint

All this talk of structural constraints on events or processes may bring to mind
the distinction introduced by Einstein between ‘principle’ theories and ‘construc-
tive’ theories.8 Constructive theories postulate ‘hypothetical constituents’ that are
used to ‘build up a picture of more complex phenomena out of the materials of a
relatively simple formal scheme’ (Einstein, 1919, p. 228). The Kinetic Theory of
Gases, for instance, conceived a gas as composed of hypothetical constituents
called ‘atoms’ or ‘molecules’, which were modelled as elastic spheres or point
centers of force, colliding with one another and with the sides of the container
which contained the gas. The aim of a constructive theory is to reduce a wide class
of diverse systems to component systems of a particular kind.

‘Principle’ theories, on the other hand, have potentially universal application.
Principle theories specify principles or laws that impose structural constraints on
the interactions or processes described by lower-level constructive theories. Einste-
in’s favorite example of a principle theory is Classical Thermodynamics, where all
physical processes are stipulated to satisfy conservative (First Law) and dissipative
(Second Law) constraints. Einstein regarded Newtonian Mechanics and the Special
and General theories of Relativity as principle theories as well.

The constraints that principle theories impose are often described as formal or
mathematical constraints on the structure of spatial and temporal events (e.g. Bub,
1973, p. 142). Thus, Newtonian mechanics imposes the inhomogeneous Galilean
group as the symmetry group of free motions; Einstein’s principle of relativity
asserts that the symmetry group of free motion is the Poincare´ group (with an
associated modification in the space–time structure); and so forth.

Given the previous discussion of formal science as a science of mathematical
structure, it is tempting to say that formal sciences do on the small scale what
principle theories do on the large scale; that is, specify formal structures that pro-
cesses and events in the world must satisfy. The traditional principle theories, one
might suggest, are distinguished simply by their near-universal scope and the funda-
mental character of their domains.

There is a certain appeal in this view, but one must avoid conflating constraints
imposed by physical principles with constraints imposed by purely mathematical
or logical principles. Physical principles are contingently true, and contraints
imposed by these principles have the status of contingent truths, not necessary
truths. Consider the derivation of the Ideal Gas Law,PV 5 nRT, within the Kinetic
Theory of Gases. The Kinetic Theory asserts that a gas is really composed of tiny

8For a recent and insightful discussion of the ‘principle’/‘constructive’ theory distinction in Einstein’s
work, see Flores (1999).
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molecules that move rapidly about, bouncing off each other and the walls of their
container. By itself the molecular hypothesis is insufficient to derive any phenom-
enological macroscopic laws. Only after the motions of the molecules are con-
strained by the contingently true laws of Newtonian Mechanics (a principle theory)
is it possible to derive the Ideal Gas Law. So constrained, the relationship between
microstates and macrostates of a gas emerges as a purely formal relationship, with
macrostates appearing as time averages of microstates. Furthermore, constraints
imposed by principle theories manifest themselves in the interaction laws of con-
structive theories, which in turn specify the kinds of forceful interactions
(mechanical, gravitational, electromagnetic, etc.) that are observed in the world.
The Law of Action–Reaction, for example, is a constraint on forceful interactions
(or perhaps, a constraint on what sorts of interactions are to count as true forces).
Mathematical constraints typically do not manifest themselves as forceful interac-
tions or as constraints on forceful interactions. The little bead in Jill’s Ko¨nigsberg
bridges game was notforcefully prevented from following a path which crossed
all the bridges without crossing any one twice.

This distinction between formal and physical constraints is important, for it
requires us to distinguish two different kinds of domain-independence. A formal
theory in the strict mathematical sense will be domain-independent because the
theory only makes claims about the formal properties of a mathematical or logical
structure. The theorems of such theories, such as network topology or graph theory,
are literally notabout physical systems at all. A physical theory may be domain-
independent in a different sense. Principle theories, for example, state physical
principles and general laws that are postulated to apply to all physical processes,
interactions or systems, without reference to specific causal mechanisms at the
‘ground’ level. Domain-independence results from the fact that a large, potentially
universal class of phenomena are constrained by the principles of the theory. In
this case the theory has a physical domain, but the domain is so large that it cuts
across conventionally defined scientific domains.

Franklin doesn’t acknowledge these two different kinds of domain-independence
in his account of formal science, but he should, because some of the sciences that
he wishes to call ‘formal’ are really physical theories whose domain-independence
is of the latter variety. Consider the following two ‘domain-independent’ claims:

(A) There is no path through a graph with an odd number of nodes which
does not cross at least one node twice.
(B) The ratio of the magnitude of indirect to direct flows in a network
increases with increasing (a) system size (number of components), (b) system
connectivity (density of interactions), (c) compartment storage (flow
impedance), (d) feedback and nonfeedback cycling, and (e) strength of direct
flows. In fact, as a network becomes larger and more complex, the contri-
bution of the indirect flows tends to exceed the contribution of the direct
flows.
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(A) is a theorem of graph theory, or ‘network topology’. It is a purely mathematical
result. (B) is a theorem ofnetwork ecology, a subdiscipline within theoretical ecol-
ogy that studies the network structure of complex ecological systems. The result
given in (B) is known as the Dominance of Indirect Effects (Higashi and Patten,
1989). It asserts that as a network grows in complexity, indirect feedback effects
will come to dominate the activity of any given node in the network. But (B) is
not a purely mathematical result. The statement of the result makes essential refer-
ence to ‘flows’, ‘cycling’, and ‘interactions’. The network that is being described
in (2) is a physicalnetwork of flows of material or energetic substance. In order
to derive (2) one needs to assume that every transfer is subject to mass-balance,
energy conservation and energy dissipation constraints, which are contingent physi-
cal constraints (‘principle theory’ constraints, the theory in this case being
Thermodynamics). The Dominance of Indirect Effects is a physical hypothesis
which, if true, is applicable to systems as diverse as computer networks, neural
networks, cellular metabolism, economic systems and ecological systems. (B) is
domain-independent in the physical sense described above, not in the purely formal,
mathematical sense; it has a physical domain, but the domain is so broad that it
cuts across traditional scientific boundaries.

Franklin’s long list of ‘formal sciences’ is a heterogeneous mixture of mathemat-
ical and physical theories that exhibit different kinds of domain-independence. The
field of cellular automata may be a formal science in the strict mathematical sense,
but theories of self-organization and nonequilibrium thermodynamics, such as Prig-
ogine’s theory of dissipative structures and ‘order through fluctuations’ (Prigogine,
1980), certainly are not. Even within a field one can distinguish the different kinds
of domain-independence. The theory of dynamical systems originated in classical
physics, and most of the classical theorems of dynamical systems theory apply to
Hamiltonian systems with potentials whose derivatives can be interpreted as real
physical forces. But more general and abstract dynamical systems can also be stud-
ied (cellular automata, for example), and the theorems of this field are best seen
as pieces of pure and applied mathematics.9 A proper understanding of the complex
systems sciences will require a more careful analysis of how formal and physical
contraints combine to produce the complex phenomena that we observe.

8. Conclusion

In this paper I reviewed James Franklin’s approach to ‘formal science’ as
presented in his ‘The Formal Sciences Discover the Philosophers’ Stone’ (Franklin,
1994). Despite appearances to the contrary, Franklin’s emphasis on the ‘practical
certainty’ made possible by formal science is not the feature that he is using to
distinguish formal science from natural science. Rather, Franklin is using the cri-

9See, for example, Hirsch and Smale (1974).
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terion of ‘domain-independence’ to distinguish the formal from the natural
sciences. I gave a more charitable reconstruction of Franklin’s conception of formal
science as a science of mathematical structure, but showed that not all of the com-
plex systems sciences are ‘formal’ in the strict mathematical sense. Many complex
systems sciences are a hybrid mix of formal and physical principles, and their
domain-independence is of a different kind than is found in purely mathematical
theories. More work needs to be done before we have a clear understanding of
how these mathematical and physical principles interact to generate explanations
of physical phenomena.
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